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From Davydov solitons to decoherence-free subspaces: Self-consistent propagation
of coherent-product states

S. Gheorghiu-Svirschevski*
1087 Beacon Street, Suite 301, Newton, Massachusetts 02459

~Received 9 May 2001; published 23 October 2001!

The self-consistent propagation of generalizedD1 @coherent-product# states and of a class of Gaussian
density-matrix generalizations is examined, at both zero and finite temperature, for arbitrary interactions
between the localized lattice~electronic or vibronic! excitations and the phonon modes. It is shown that in all
legitimate cases, the evolution ofD1 states reduces to the disentangled evolution of the componentD2 states.
The self-consistency conditions for the latter amount to conditions for decoherence-free propagation, which
complement theD2 Davydov soliton equations in such a way as to lift the nonlinearity of the evolution for the
on-site degrees of freedom. Although it cannot support Davydov solitons, the coherent-product ansatz does
provide a wide class of exact density-matrix solutions for the joint evolution of the lattice and phonon bath in
compatible systems. Included are solutions for initial states given as a product of a@largely arbitrary# lattice
state and a thermal equilibrium state of the phonons. It is also shown that external pumping can produce
self-consistent Frohlich-like effects. A few sample cases of coherent, albeit not solitonic, propagation are
briefly discussed.
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I. INTRODUCTION

Davydov’s model of soliton propagation in molecul
chains is not rigorous@1,2#, but its transparency and physic
appeal continue to encourage intense work regarding its
ity as a practical approximation, at both zero and finite te
perature@3#. Alternatively, it is commonly hoped that mor
elaborate Hamiltonians and/or wave functions may ren
the model exact or improve its accuracy, and various p
posed refinements have attempted to do so@4#. From the
latter point of view, it is quite intriguing that the conven
tional approach to the problem stops short of probing
self-consistency conditions for the wave-function ansatz.
deed, the Davydov model relies on two fundamental assu
tions: ~i! A D1 @D2# ansatz state is a solution of the Schr¨-
edinger equation for the Davydov Hamiltonian.~ii ! The time
dependence of the ansatz state can be obtained by tre
the ansatz parameters as canonical variables in a Hamilt
functional given by the average of the Davydov Hamiltoni
on the ansatz state. The second conjecture finds a
consistent foundation in the variational principle of least
tion @5#, while the first is suspended, for practical purpos
and the state ansatz is cast as a variational trial ansatz
the ansatz state is likely to be a good@dynamical# trial state
in those situations that are ‘‘close,’’ in some suitable, pert
bative sense, to a self-consistent model for which this sta
an exact solution. Therefore, one can start, conceivably
questioning what particular circumstances allow an
tangled superposition of coherent or thermal-coher
@Gaussian# phonon states to preserve its cohesion in time

The present paper aims to address this problem in a
eral setting, at both zero and finite temperature. The o
come, which can be viewed, eventually, as a generaliza
of two previous theorems, due to Brown@2#, on the validity
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of the standardD2 andD1 states, has the unexpected effe
to place the Davydov ansatz problem in a fresh perspect
Our starting point is a generic, not necessarily unidime
sional, lattice ofN interacting monomers, each coupled
turn to a common phonon@bosonic# band. Noa priori as-
sumptions are made as to the nature of the lattice@monomer#
degrees of freedom@excitonic or vibronic#, of the phonon
modes@acoustic/longitudinal, optical/dispersionless, etc.#, or
of the site-to-site and lattice-phonons interactions. Not s
prisingly, however, the very nature of the coherent states
states specific to harmonic systems, limits the type of app
priate lattice-phonon interactions to bilinear terms in t
phonon degrees of freedom at zero temperature, and to
linear terms at finite temperature. This notwithstanding,
critical constraints concern the accompanying, entangled
tice states and the lattice contribution to the lattice-phon
interaction. Somewhat contrary to the widely held view th
the coherent phonons should drive the~self-trapped! lattice
configuration, it turns out that phonon coherence is also
sentially conditioned by the nature of the entangled latt
states. We find that self consistency requires, both at z
and at finite temperature, that the dynamics ofD1 superpo-
sitions be reduced, remarkably, to the disentangled prop
tion of theD2 components. Therefore, no self-consistentD1
model can generate soliton equations coupling the sepa
D2 states. Further, the lattice state in anyD2 product must
satisfy constraints leading to @slightly modified#
decoherence-free evolution@6#. As a result, the self-
consistent lattice states propagate unitarily and all poten
nonlinearities in their effective equation of motion canc
identically. Hence, noD2 model based on a linear decomp
sition of the lattice state can generate Davydov-type soli
equations for the associated@linearly independent# lattice
amplitudes.

A stronger and quite peculiar result concerns systems w
lattice-phonon couplings linear in the phonon coordinat
©2001 The American Physical Society07-1
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First, only such systems can support generalized, Gaus
D2 states at finite temperatures. Second, the correspon
self-consistency conditions for lattice states become p
cisely the constraints that typically define decoherence-
subspaces@DFS#, as recently considered in connection wi
noiseless quantum computation@6,7#, and the effective
Hamiltonian reduces to the unperturbed lattice Hamilton
@up to a phonon-modulated energy shift, which can be tra
ferred onto the phonon state#. When the coupling is time
independent, the associated phonon displacements per
simple harmonic oscillations around a displaced equilibri
position. One is so led to the conclusion that finit
temperature coherent-product propagation is possible if
only if the lattice-phonon coupling is linear in the phono
coordinates and decoherence-free subspaces exist for th
tice subsystem.

From the point of view of the soliton problem, this ou
come relates to a rather self-evident idea in the contex
decoherence-free propagation. That is, if an unperturbed
tice can support soliton states that evolve entirely within
DFS, such solitons will propagate unperturbed@at arbitrary
temperatures#, regardless of the state of the environment. O
viously, coherent-product states lose any special significa
in such a solution, and the problem falls outside the scop
the present paper.

Nevertheless, the self-consistent coherent-product an
demonstrates a sufficient number of notable features to
main attractive by itself. For instance, let us recall that n
phonon displacements place the bath in a thermal s
hence, initial null displacements reduce any initial Gauss
D1 state to the ubiquitous product of a lattice state an
phonon thermal state. Since the initial lattice state can be
arbitrary distribution on a direct sum of@orthogonal# DFS,
we obtain the following corollary, with reference to th
theory of decoherence-free propagation.

Let a system interact with a boson bath through a co
pling linear in boson coordinates. Any distribution on a d
rect sum of system DFS develops, when brought in con
with the bath in a thermal state, into a [strongly entangle
Gaussian D1 state.

Because the expression of theD1 state is exactly known
the development of the system-bath entanglement in su
model can be monitored precisely. The result is a remarka
counterexample to the standard picture of relaxation thro
thermal contact. Regardless of any intrinsic characteris
the bath is forced into a coherent, nonequilibrium state, w
the DFS components of the system state evolve in an un
turbed manner. This confirms earlier claims that decohere
may produce in fact coherent states@8#, and therefore caution
should be exerted in assuming that a heat bath remains
times in thermal equilibrium@9#. It also corroborates the
similar conclusion of a recent study@10# of decoherence in a
quantum system interacting with a@macroscopic# measuring
apparatus. When the correlations between distinct DFS v
ish in time, the system is driven toward a statistical super
sition of decoherence free, pointer states and we retriev
typical example of environment-induced superselection@11#.
But in another interesting limit, which arises under tim
independent interactions, the bath modes can be prep
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such that the initial distortions match the displaced equi
rium positions for the coherent oscillations. In this situatio
the bath remains in a stationary nonequilibrium state, wh
the system evolves unitarily, according to the unperturb
dynamics@up to time-independent DFS energy shifts#, irre-
spective of any entanglement with the bath. Leaving as
questions of stability, such a state provides an apparent c
terexample to environment-induced superselection, wit
the same physical system.

Along a different line of inquiry, proper external pumpin
can be used to promote decoherence-free propagation in
tems that otherwise may not have the necessary symme
We find, incidentally, that such a process can be accom
nied by a Frohlich-like effect on the bath modes. That
pumping at a frequency attuned to the lattice subsystem
result in a macroscopic displacement of a bath mode o
different frequency, while other reservoir modes remain
thermal equilibrium.

The paper is organized as follows. We begin with t
familiar pure-state case in Sec. II. Section IV develops
density-matrix generalization, which includes Davydov
thermal ansatz and allows a straightforward approach to
finite-temperature problem. To this end, we employ a form
framework, outlined in Sec. III, based on the ‘‘square-roo
decomposition of the density matrix and the concepts of th
mal vacuum and thermal Fock space introduced in th
mofield dynamics@TFD# @12#. This formalism can be re-
garded in effect as a version of TFD without auxilia
systems. Our choice is motivated by the notable techn
advantage that pure state calculations can be effortle
transcribed into the density-matrix domain, with a minimu
of adjustments. Section V examines and discusses s
popular versions of Davydov’s model, alongside with sam
self-consistent examples, including a case with tim
dependent interaction~external pumping!. A summary and
concluding remarks are provided in Sec. VI.

II. SELF-CONSISTENT DYNAMICS OF D1 STATES
AT TÄ0

Let the lattice-phonon Hamiltonian be

H5Hlat1Hph
0 1W, ~1!

where

Hlat5 (
n50

N21

«ncn
†cn1Vlat ~2!

describes theN-site lattice, withVlat subsuming all hoping
interactions,

Hph
0 5(

q
\vqbq

†bq ~3!

is the bare phonon Hamiltonian, andW accounts for any
lattice-phonon and/or anharmonic-phonon interactions.
us search for self-sustained soliton statesuC& in the slightly
generalized DavydovD1 ansatz
7-2
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uC&5(
a

ua&uba&, ~4!

where theua& ’s are orthogonal, but not normalized, lattic
~vibronic! states, ^a8ua&;da8a , (a^aua&51, and the
uba& ’s are coherent phonon states,

uba&5expF(
q

~bqabq
†2bqa* bq!G u0&ph . ~5!

Here, theua& ’s are allowed to contain local excitations
different numbers and are not necessarily confined to
same site. TheuC& ansatz above is, thus, general enough
cover both single-quantum and multiquanta solitons, as w
as their eventual superpositions. The set of occupied st
$ua&%^auC&Þ0 is to be regarded as embedded into an ortho
nal basis $ua&% of lattice states; the unoccupiedua& ’s,
^auC&50, may be assigned by defaultuba&5u0&ph . For
each displaced phonon vacuumuba&, let us construct the
corresponding orthonormal Fock basis

u•••nq,a•••&5)
q

1

Anq!
~bq

†2bqa* !nquba&, ~6!

whereu•••nq,a•••& carriesnq,a displaced quanta of modeq
relative to uba&. In particular, u1q,a&5(bq

†2bqa* )uba&
denotes the first excited state of the displaced modq
relative to the displaced vacuumuba&. The set
$ua&u•••nq,a•••&%a,(qnq,a>0 obviously provides an orthogo
nal basis for the overall lattice-phonon system.

Extending the idea originally applied by Brown in Re
@2#, the conditions under which the stateuC& of Eq. ~4! is
compatible with the dynamics driven byH will be derived
from the expansion of the corresponding Schro¨dinger equa-
tion

i\
d

dt
uC&5HuC& ~7!

in this displaced phonon basis. Indeed, substitution of
explicit form of uC&, followed by some straightforward al
gebraic manipulation, leads to

i\F(
a

uȧ&uba&1
1

2 (
a,q

~ ḃqabqa* 2bqaḃqa* !UaL uba&

1(
a,q

ḃqaua&u1q,a&

5(
a

S Hex1W1(
q

\vqubqau2D ua&uba&

1(
a,q

\vqbqaua&u1q,a&. ~8!

Since the time derivative ofuC& on the left-hand side of Eq
~8! carries only terms in displaced vacuums and their fi
excited states, it is foreseeable that the main constraints
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emerge from the requirement that higher-order contributi
on the right-hand side vanish identically. As previous
hinted, we can expect the interaction to be limited to biline
terms in the phonon coordinates. But it will also becom
apparent that the form of the effective equation of moti
and the self-consistency conditions for the lattice statesua&
are shaped by this same requirement. So consider first
contraction of both sides of Eq.~8! with states
ua8&u•••nq,a8•••& carrying more than one phonon quantum
(qnq.1. After conveniently expanding the contribution
W along displaced phonon bases and rearranging the te
we are left with

(
aÞa8

@^a8uHexua&1^a8u^bauWuba&ua&2 i\^a8uȧ&#

3^•••nq8,a8•••uba&1 (
aÞa8,q

^a8u^1q,auWuba&ua&

3^•••nq8,a8•••u1q,a&

1(
a

(
$mq%

(
q

mq.1

^a8u^•••mq,a•••uWuba&ua&

3^•••nq8,a8•••u•••mq,a•••&50. ~9!

Under the reasonable assumption that the form of the in
action W limits the last sum above to a finite number
terms, a nontrivial solution will be compatible with th
infinite number of constraints~9! if and only if all
quantities multiplying the nonvanishing overlap facto
^•••nq8,a8•••u•••kq,a•••& cancel identically. In particular
the terms under the last sum in Eq.~9! imply

^•••mq,a•••uWuba&50, (
q

mq,a.1. ~10!

Hence,W can only contain terms inbq , bq
† , andbq

†bq8 , and
must be of the form

W5(
q

~bq
†wq1bqwq

†!1 (
q,q8

bq
†bq8uqq8 , ~11!

where the operatorswq and uqq8 act on on-site degrees o
freedom only, as~polynomial! functions ofcn , cn

† , and the
hermiticity of W requiresuq8q

†
5uqq8 . Further, from the sec-

ond sum in Eq.~9! it can be inferred that

^a8u^1q,auWuba&ua&50 ; q, aÞa8. ~12!

But sinceua8& spans an entire lattice basis, the above c
straints imply, in fact, that the occupied statesua& must sat-
isfy eigenvalue equations of the form

Gq,aua&5gq,aua&, ; a,q, ~13!

for Gq,a5^1q,auWuba&. In the ansatz~11! for W, the opera-
tors Gq,a read
7-3
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Gq,a5wq1(
q8

bq8auqq8 . ~14!

Similarly, from the first sum in Eq.~9! it follows that

^a8uHexua&1^a8u^bauWuba&ua&2 i\^a8uȧ&50,

; a8Þa, ~15!

which shows that the occupiedua& ’s, ^auC&Þ0, should
evolve according to an effective Schro¨dinger equation

i\uȧ&5@Hex1^bauWuba&1Va#ua&, ~16!

with Va a scalar functional, and

^bauWuba&5(
q

~bqa* wq1bqawq
†!1 (

q,q8
bqa* bq8auqq8

5(
q

~bqawq
†1bqa* Gqa!

5(
q

~bqa* wq1bqaGqa
† !. ~17!

It is already evident, from Eqs.~13! and ~16!, that the
evolution of distinct lattice statesua& is reciprocally decou-
pled, unless the eigenvaluesmq,a exhibit a dependence o
somebqa8 with a8Þa. It will be seen shortly that this is no
the case. At the same time, it can be recognized that
eigenvalue equations~13! implement an effective decouplin
of the lattice-phonon interaction, very much in the manne
the effective decoupling responsible for decoherence-
subspaces@6#. The latter process requires that, for a lattic
phonons interaction of the general form(kWk

( lat)Uk
(ph) , the

lattice stateuC lat& be such thatWk
( lat)uC lat&5mkuC lat& for

all k, and at all times. A subspace of lattice states comply
with these constraints is termed a decoherence-free subs
~DFS!. Obviously, states belonging to a lattice DFS are co
pletely decoupled from the phonon dynamics and evolve
perturbed. A closer examination of our conditions~13!
shows that, in fact, the present process differs from a
DFS selection simply by the assumption of a coherent an
for the state of the phonon modes. When the interaction
Eq. ~11! is applied to any productua&uba&, the result reads

Wua&uba&5F(q
bq

†S wq1(
q8

bq8auqq8D ua&G uba&

1F(
q

bqawq
†ua&G uba&,

and it is immediate that condition~13! is just the proper
condition for the decoupling of the first term on the righ
hand side. It must be kept in mind, however, that we ha
arrived at this result without any assumptions on the form
W or on the separability of theD2 terms at the outset.

The details in the equation of motion~16! and the self-
consistency constraints~13! will follow, as can be antici-
05190
e

f
e

-

g
ace
-
-

e
tz

in

e
f

pated, from a balance of the left-hand side of Eq.~8! with
similar, nonvanishing terms on its right-hand side. Indeed,
us first contract Eq.~8! with statesua8&uba8&. Taking into
account conditions~15! above, we are led to

i\^auȧ&5^au~Hex1^bauWuba&!ua&1(
q

F\vqubqau2

2
i\

2
~ ḃqabqa* 2bqaḃqa* !G^aua&, ~18!

which, in conjunction with Eqs.~16!, identifies

Va5(
q

F\vqubqau22
i\

2
~ ḃqabqa* 2bqaḃqa* !G . ~19!

Likewise, contracting Eq.~8! with statesua8&u1q,a8& yields

@ i\ḃq8a82\vq8bq8a8#^a8ua8&d0,̂ a8uC&

5^a8u^1q8,a8uWuba8&ua8&d0,̂ a8uC&

1 (
aÞa8

$^a8uHexua&^1q8,a8uba&

1^a8u^1q8,a8uWuba&ua&2 i\^a8uȧ&^1q8,a8uba&%.

~20!

Using again ansatz~11! for the interactionW and Eq.~12! in
the form ^a8uGq,aua&;da8a , we note that

(
aÞa8

^a8u^1q8,a8uWuba&ua&

5 (
aÞa8,q

@^1q8,a8ubq
†uba&^a8uGq,aua&1bqa^a8uwq

†ua&

3^1q8,a8uba&#5 (
aÞa8,q

bqa^a8uwq
†ua&^1q8,a8uba&

5 (
aÞa8

^a8u^bauWuba&ua&^1q8,a8uba&. ~21!

It becomes apparent now that the sum on the right-hand
of Eq. ~20! cancels by virtue of conditions~15!, while the
remaining expression complements Eq.~12!, and shows that
the exact form of Eqs.~13! is

Gq,aua&5@ i\ḃqa2\vqbqa#ua&, ; a,q. ~22!

Finally, it must be verified that the occupied lattice sta
remain orthogonal at all times@^a(t)ua8(t)&;da,a8# under
the propagation described by Eqs.~16!. Indeed, it is imme-
diate that for any two occupied states,^auC&Þ0,̂ a8uC&
Þ0,

i\@^a8uȧ&1^ȧ8ua&#5^a8u^bauWuba&ua&

2^a8u^ba8uWuba8&ua&, ~23!
7-4
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which, in view of Eqs.~17!, ~22!, and~14!, becomes succes
sively

i\
d

dt
^a8ua&5(

q
@bqa^a8uwq

†ua&2bqa8
* ^a8uwqua&#

5(
q

@bqabq8a8
* ^a8uuqq8

† ua&

2bqa8
* bq8a^a8uuqq8ua&#

5(
q

bqa8
* bq8a@^a8uuq8q

† ua&2^a8uuqq8ua&#

50. ~24!

The last line above follows from the condition thatuq8q
†

5uqq8 in order to secure the hermiticity ofW.
To sum our results to this point, a~generalized! D1 state

uC& @Eq. ~4!# describes a self-consistent lattice-phonon d
namics if and only if

~a! the interactionW is of the form~11!;
~b! the lattice statesua& are driven by the effective

Schrödinger equations~16! and each satisfy, simultaneousl
a ~large! number of DFS-like constraints imposed by t
eigenvalue equations~22! for the operatorsGq,a ;

~c! the phonon displacement parametersbqa obey the
evolution equations

i\ḃqa2\vqbqa5gq,a~ba ,w,u!, ; q,a, ~25!

where gq,a denotes an eigenvalue ofGq,a ~assuming any
exists! and we have indicated explicitly the dependence
the set ofbqa’s and on the interaction factorswq anduqq8 .

As suggested earlier, self consistency is seen to req
that the propagation of individualua& ’s and their associated
phonon parameters$bqa% be decoupled from similar terms
This rather strong result shows that, under quite general c
ditions, a lattice-phonon system can supportD1 states if and
only if it can support the component orthogonalD2 states
uCa&5ua&uba& individually. In particular, it ensues that
given system can sustain standardD1 states

uC1&5 (
n51

N

wncn
†ubn&u0&ex ~26!

if and only if it can sustain on-site, single-quantum coher
statesuFn&5cn

†u0&exubn&. Even under such circumstances,
turns out that theD1 states can only yield static lattice dis
tributions @static ‘‘solitons’’#. Indeed, according to Eq.~24!,
^aua&5const@consistent with the unitary evolution ofua&#
and, correspondingly, the probabilitiesuwnu2 in any self-
consistent, standardD1 state @Eq. ~26!# are conserved in
time. The same holds true for higher-order~multiquanta! D1
states based on on-siteua& states, as well as for their supe
positions. As a corollary, mobile lattice distributions c
arise if and only if the driving Hamiltonian accommodat
D2 states with delocalized lattice components.
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Let us now note that, while Eqs.~16! are just the usua
Davydov equations for the@D2# lattice factor states, Eqs
~25! do not involve theua& ’s themselves, hence, no param
eters defining these states can appear in the evolution e
tions for thebqa’s. In other words, a solution for thebqa’s,
when it exists, will not show a functional dependence on
parameters ofua&, and substitution of the explicit expres
sions for thebqa’s into the Hamiltonian of Eq.~19! cannot
lead to nonlinear equations forua&.

To clarify the relation between this result and Davydov
soliton equations, rewrite the equations of motion for t
bqa’s as @Eq. ~22!, ^aua&51#

i\ḃqa2\vqbqa5^auGq,aua&. ~27!

A linear parametrization ofua& in terms of some fixed lattice
basis states,ua&5(kakuk&, will induce, apparently, nonlin-
ear equations typical of Davydov’s theory. In fact, it can
verified that Eqs.~16! and~27! do recover theD2 form of the
soliton equations for the appropriate Hamiltonian and cho
of ua&. However, Eqs.~16! and ~27! cannot describe a self
consistent dynamics unless complemented by the requ
ment thatua& also be an eigenfunction ofGq,a . But, in that
case, the average on the right-hand side of Eq.~27! reduces
to the corresponding eigenvalue, and the propagation ofua&
becomes linear. It is interesting that although the exact fo
of Eqs.~22! is known in the literature for certain extension
of Davydov’s model†see, e.g., Ref.@14#‡, their interpretation
was merely as a particular type of nonlinear equations for
phonon parameters. Of course, the linear effective evolu
of the lattice statesua& does not preclude, by itself, nontrivia
phenomena in the lattice dynamics. Provided appropriate
lutions exist, it is conceivable that nonlinear effects can
arise, and be modulated by the phonon contribution. Ho
ever, the circumstances leading to such effects are, o
ously, rather restrictive.

The constraint thatua& be a~simultaneous! eigenfunction
of the operatorsGqa can be understood also as a restricti
on the allowed initial stateua&, as seen by substituting
ua(t)&5Ua(t)ua(0)&, with Ua(t) the unitary evolution op-
erator corresponding to the effective Hamiltonian of E
~16!. Further, for givena, the set of constraints~22! is
equivalent to the single initial-state constraint

Laua~0!&50, ~28!

for

La5E
0

`

dt(
q

@Ḡq,a
1 ~ t !2gq,a* ~ t !#@Ḡq,a~ t !2gq,a~ t !#,

~29!

with

Ḡq,a~ t !5Ua
†~ t !Gq,a~ t !Ua~ t !. ~30!

In this point of view, the existence of self-consistentD1
states is conditioned by the existence of an appropriate
space of acceptable initial lattice states, determined by E
~28!–~30!. When such a subspace exists, the propagatio
7-5
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any D1 state@Eq. ~4!# with initial lattice states belonging to
this subspacemaybe described by the generalized Davyd
equations~16! and ~27!, but, as noted above, the appare
nonlinearity of the underlying lattice dynamics cancels ide
tically. Equations~27! reduce in fact to Eqs.~25!. In Sec. IV
it will be shown that self-consistent propagation at finite te
perature further restricts the allowable forms of lattic
phonon interactions, and sets final bounds on the subspa
permitted initial states.

III. DENSITY-MATRIX FORMAL FRAMEWORK

The approach of the previous section will be extended
the finite-temperature domain in a framework that borro
heavily from the thermofield dynamics~TFD! construct@12#
†a somewhat related formalism is detailed in@13#‡. Specifi-
cally, the total density matrix for the lattice-phonon system
written asr̂5ĝĝ1, where the nonhermitian state operatorĝ
is defined up to a unitary gauge transformation of the k
ĝ→ĝU(t), UU15U1U5I . In other words, any two dis
tinct state operatorsĝ,ĝ8 corresponding to the same dens
matrix are necessarily related byĝ85ĝU(t). From the
evolved density matrix, written in the form

r̂~ t !5expF2
i

\
HtGg~0!U~ t !U1~ t !g1~0! expF i

\
HtG ,

one can infer that

g~ t !5expF2
i

\
HtGg~0!U~ t !

satisfies the von Neumann-like equation

i\
dĝ

dt
5Hĝ2ĝK, ~31!

with K the @arbitrary# hermitian generator of the unitar
gauge factorU(t). In superoperator notation, Eq.~31! reads

i\
dĝ

dt
5~H2K̃ !ĝ, ~32!

where H is the superoperator defined by the Hamiltoni
H, Hĝ5Hĝ, and K̃ is given byK̃ ĝ5ĝK, @H,K̃ #50. As
in TFD, the tilde notation is used here for the tilde conjug
of a superoperatorA, linear or not, introduced as@12#

@A~ â !#15Ã~ â1!. ~33!

If A(â)5Aâ for some linear operatorA, Eq. ~33! yields
Ã(â)5âA1, which reduces toÃ(â)5âA when A is self
adjoint. It is immediate that the tilde operation is distributi
against the usual addition and multiplication of linear ope
tors, but antilinear with respect to the multiplication by sc
lars. Also, tilde-symmetric superoperators map self-adjo
operators onto self-adjoint operators.
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Obviously, from Eq.~31! one can retrieve the von Neu
mann equation for the density matrix, which in superopera
form readsi\dr̂/dt5(H2H̃) r̂. The gauge generatorK does
not bear any physical significance, but, as will be seen in
next section, may prove instrumental in streamlining the c
culation, although it can suffer restrictions under a giv
ansatz forĝ. Note that whileH can contain only direct su
peroperators generated by the usual observables@or creation
and annihilation operators#, K̃ can only contain the corre
sponding tilde conjugates.

If the space of linear operators is endowed with the H
bert space structure induced by the inner product

~ ŝuv̂ !5Tr~ ŝ1v̂ !, ~34!

ĝ spans the sphere of unit norm operators@(ĝuĝ)51#, and
the average of an observable becomes

Tr~Or̂ !5Tr~Oĝĝ1!5~ ĝuOuĝ !. ~35!

An orthonormal operator basis$ŝ%, (ŝuŝ8)5dss8 , deter-
mines a basis representation ofĝ as

ĝ5(
s

~ŝuĝ !ŝ, ~36!

and similarly for observables@superoperators#. Special atten-
tion receives the operator equivalent of the Hilbert spa
Fock basis, which implements the operator Fock space.a
anda1 are boson annihilation and creation operators for
Hilbert space vacuumu0&, the annihilation and creation@su-
peroperator# counterparts for the operator vacuum@projector#
u0&^0u are a,ã and, respectively,a1,ã1. The corresponding
operator Fock basis follows simply as the exterior produc
vectors of the Hilbert space Fock basis,

un,m̃)5
1

An!m!
~a1!n~ ã1!mu0&^0u

[
1

An!m!
~a1!nu0&^0uam5un&^mu. ~37!

Applying now the central idea of TFD, note that a bos
thermal state operator

ĝT5Z21/2exp@2~\v/2kBT!a1a#

is related to the zero-temperature vacuum by the unita
tilde-symmetric~super!transformation@12#

ĝT5U~T!u0&^0u, ~38!

U~T!5exp@~a1ã12aã!u#,

with tanhu5exp@2\v/2kBT#. Hence, it is itself vacuum for
the thermal annihilation~super!operators

A[U~T!aU1~T!5acoshu2ã1 sinhu, ~39a!
7-6
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Ã[U~T!ãU1~T!52a1 sinhu1ãcoshu. ~39b!

Just as in the zero-temperature case, the corresponding
erator Fock space can be constructed on the ‘‘ther
vacuum’’ ĝT by using the thermal creation~super!operators
A1 and Ã1.

The advantage of using the state operatorĝ and Eq.~2.2!
over the density-matrix and the von Neuman equation co
from the evident analogy between this framework and
usual Hilbert space formalism. In addition, for the problem
hand, our Gaussian density-matrix ansatz~see below! has a
simpler, if somewhat abstract, expression forĝ.

IV. SELF-CONSISTENT DENSITY-MATRIX
COHERENT-PRODUCT †D1‡ STATES

The zero-temperatureD1 ansatz for pure wave function
~state vectors! is generalized here to the product ansatz

ĝ5(
a

âĝaU ~40!

for the state operator. In direct analogy to the pure s
ansatz~4!, the lattice state operatorsâ are assumed orthogo
nal, but not normalized, in the sense of the operator sc
product (âuâ8)5Tr(â1â8);da8a , while the phonon state
operatorsĝa are given the thermal Gaussian@coherent# form

ĝa5)
q

ĝq,a5)
q

exp@bqabq
†2bqa* bq#ĝq,T , ~41!

with

ĝq,T5
1

AZq

expF2
\vq

2kBT
bq

†bqG . ~42!

The overall conservation of probability requires(a(âuâ)
51. Also, as in the pure state case, theâ ’s will be consid-
ered a subset of an orthogonal lattice operator basis$â% and
the noncontributingâ ’s, (âuĝ)50, will be assigned by de
fault null phonon displacements,bqa50.

The ansatz~40! corresponds to the density matrix

r̂5 (
a8,a

~â8â1!~ ĝa8ĝa
† !, ~43!

which can be understood, in general, as a strongly entan
@incoherent# superposition of phonon Gaussian states.
deed, averaging over the lattice degrees of freedom yields
phonon density matrix as

r̂ph5(
a

~âuâ !)
q

1

Zq
expF2

\vq

kBT
~bq

†2bqa* !~bq2bqa!G .
~44!

When the lattice factorsâ correspond to mutually orthogona
pure states, i.e.,â5ua&^auU for some common unitary fac
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~43! acquires the simpler and more transparent form

r̂5(
a

ua&)
q

1

Zq
exp@bqabq

†2bqa* bq#

3expF2
\vq

kBT
bq

†bqGexp@2bqabq
†1bqa* bq#^au.

~45!

If the @unnormalized# statesua& are set proportional to the
on-site, one-quantum statesu1n&[cn

1u0&, expression~45! re-
covers Davydov’s original finite-temperature ansatz@15#. At
zero temperature, the phonon contribution reduces toĝa
→uba&^0uph and the ansatz~40! yields

ĝ5(
a

âuba&^0uphU.

For lattice factorsâ5ua&^xu, with a common^xu, ^xux&
51, the state operator becomesĝ5@(aua&uba&] ^xu^0uph
and corresponds to a pureD1 state of the type~4!. Even
more remarkably, when all displacement parameters van
bqa50, all ĝa reduce to the thermal state operatorĝT

5)qĝq,T , and the density matrix~43! acquires the familiar
product form

r̂5 r̂ latr̂ph,T , ~46!

where r̂ lat5@(aâ#@(aâ#1 and r̂ph,T

5)q(Zq)21 exp@2(\vq /kBT)bq
†bq#. Since the lattice state op

erator @(aâ# is quite arbitrary, the ansatz~40! is seen to
cover all situations where a product state as in Eq.~46!
evolves into an entangled mixture described by Eq.~43!.
Note that the ansatz~40! accounts for a much wider class o
evolutions, because, in general, the displacement param
bqa need not vanish simultaneously at any time.

Let us now introduce, for each phonon modeq, the ther-
mal annihilation~super!operators

Bq5bq coshuq2b̃q
† sinhuq , ~47a!

B̃q52bq
† sinhuq1b̃q coshuq , ~47b!

with tanhuq5exp@2\vq/2kBT#. Upon substituting the recip
rocal transformations intoĝq,a5exp@bqabq

†2bqa* bq#ĝq,T , it

is seen thatĝa5)qĝq,a represents a displaced vacuum f
Bq and B̃q , since

Bqĝa5bqa coshuqĝa , ~48a!

B̃qĝa52bqa sinhuqĝa . ~48b!

The displaced, orthonormal Fock basis constructed for e
ĝa will be denotedu•••nq,a ,m̃q,a•••) and reads explicitly
7-7
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u•••nq,a ,m̃q,a•••)5)
q

1

Anq!

1

Amq!
~Bq

†2bqa* coshu!nq

3~B̃q
†1bqa* sinhu!mqĝa . ~49!

As in the pure state framework, the s

$âu•••nq,a ,m̃q,a•••)% provides an orthogonal operator bas
for the total lattice-phonon system, and the analogy can
carried further, step by step. The self-consistency conditi
for the ansatz~40! can be derived now from the expansio
of the associated equation of motion~32! in the basis

$âu•••nq,a ,m̃q,a•••)%.
But a word is in order first regarding the gauge genera

K̃ . One should note that substitution of the reciprocals
transformations~47! in the bare phonon HamiltonianHph

5(q\vqbq
†bq produces nondiagonal products ofB’s and

B̃’s, which may prove cumbersome. But, if it is observed,
in TFD @12#, that

bq
†bq2b̃q

†b̃q5Bq
†Bq2B̃q

†B̃q ,

the gauge generator can be suitably rewritten

K̃→K̃2(
q

\vqb̃q
†b̃q , ~50!

which brings the free phonon Hamiltonian for Eq.~32! to the
invariant form

Hph2H̃ph5(
q

\vq~bq
†bq2b̃q

†b̃q!. ~51!

The equation of motion~32! acquires, thus, the particula
form

i\
dĝ

dt
5@H lat1W1~Hph2H̃ph!2K̃ #ĝ. ~52!

Subsequent substitution of the product ansatz~40! pro-
duces

i\(
a

dâ

dt
ĝa1

i\

2 (
a,q

@ḃqabqa* 2bqaḃqa* #âĝa

1 i\(
a,q

ḃqa coshuqâu1q,a)

2 i\(
a,q

ḃqa* ~sinhuq!âu1̃q,a)

5(
a

~H latâ !ĝa1(
a

~W2K̃ !âĝa

1(
a,q

\vqubqau2âĝa1(
a,q

\vqbqa~coshuq!âu1q,a)

1(
a,q

\vqbqa* sinhuqâu1̃q,a), ~53!
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which is to be contracted, successively, with each of
basis operators$âu•••nq,a ,m̃q,a•••)%.

The results of the preceding section can be exten
straightforwardly, mostly by obvious substitution
For instance, the contraction with operato

$â8u•••nq,a8 ,m̃q,a8•••)% carrying more than one excite
‘‘quantum,’’ i.e., (q(nq1m̃q).1, shows that the
interaction-gauge term (W2K̃ ) must be such that

~•••nq,a ,m̃q,a•••uW2K̃ uga!50. ~54!

Hence, the allowed phonon dependencies are zero order,
order, or bilinear of the typeBq

†Bq8 , B̃q
†Bq8 and the tilde

conjugates. However, it can be checked that due to the
cific character ofW andK̃ @as functionals of right-acting and
left-acting operators#, the bilinear terms can only aris
accompanied by prohibited terms of the for
(coshuq)(sinhuq8)Bq

†B̃q8
†

1 and (coshuq)(sinhuq8)BqB̃q8 . For

this reason, the allowed expressions forW and K̃ at finite
temperatures@sinhuqÞ0# reduce to the very simple forms@in
terms of zero-temperature operators#

W5(
q

~wqbq
†1wq

†bq! ~55!

and, respectively,

K̃5K̃ lat1(
q

~ ṽqb̃q
†1 ṽq

†b̃q!, ~56!

where the zero-order term inW is assumed subsumed i
H lat , andK̃ lat , wq, andvq are lattice operators, functional
of cn and cn

† only. At zero temperature, bilinear couplin
terms can still coexist and the outcome parallels the res
of Sec. II. Let us consider here the finite-temperature ca

From the same contraction procedure, it also follows t

~ â8u~1q,auW2K̃ uĝa!uâ !5~ â8u~ 1̃q,auW2K̃ uĝa!uâ !50,

; q, aÞa8 ~57!

and

i\S â8Udâ

dt
D 5~ â8uH latuâ !1~ â8u~ ĝauW2K̃ uĝa!uâ !,

; aÞa8, ~ âuĝ !Þ0. ~58!

Using expressions~55! and~56!, one obtains from Eqs.~57!

~ â8uwquâ !coshuq2~ â8uṽq
†uâ !sinhuq50,

; q, aÞa8, ~ âuĝ !Þ0, ~59a!

~ â8uwq
1uâ !sinhuq2~ â8uṽquâ !coshuq50,

; q, aÞa8, ~ âuĝ !Þ0, ~59b!

and similarly,
7-8
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~ ĝauW2K̃ uĝa!5(
q

~bqa* wq1bqawq
†!2K̃ lat , ~60!

which, inserted in Eq.~58!, leads to

i\S â8U dâ

dt
D 5(â8uHex2K̃ lat

1(
q

~bqa* wq1bqawq
†!uâ),

; aÞa8, ~ âuĝ !Þ0. ~61!

As before, sinceâ8 spans a complete lattice basis, Eqs.~59!

and ~61! indicate that contributingâ ’s, (âuĝ)Þ0, satisfy
operatorial equations of the form

~coshuq!wqâ2sinhuq) ṽq
†â5hq,aâ, ~62a!

~sinhuq!wq
†â2~coshuq!ṽqâ5h̄q,aâ, ~62b!

and, respectively,

i\
dâ

dt
5FH lat2K̃ lat1(

q
~bqa* wq1bqawq

†!1VaG â,

~63!

wherehq,a , h̄q,a , andVa are scalars. The explicit expres
sions for the latter can be identified from the contractions
Eq. ~53! with the basis operatorsâ8u1q8,a8), â8u1̃q8,a8),
and, correspondingly,â8ĝa8 . A straightforward calculation
yields

hq,a[~âu~1q,auW2K̃ uĝa!uâ !5~ i\ḃqa2\vqbqa!coshuq ,
~64a!

h̄q,a[~âu~ 1̃q,auW2K̃ uĝa!uâ !

5~ i\ḃqa2\vqbqa!* sinhuq , ~64b!

and

Va[ i\S âUdâ

dt
D 2~ âuH latuâ !1~ âu~ ĝauW2K̃ uĝa!uâ !

5(
q

\vqubqau22
i\

2 (
q

~ ḃqabqa* 2bqaḃqa* !. ~65!

After substituting expressions~64!, Eqs. ~62! can be rear-
ranged in such a manner as to separate the contribution
wq from those invq . To this end, multiply Eq.~62a! on the
right by (â1coshuq), and the adjoint of Eq.~62b! on the left
by (2â1 sinhuq), and add to obtain

~cosh2 uq!wq~ ââ†!2~sinh2 uq!~ ââ†!wq

5~ i\ḃqa2\vqbqa!~ââ†!.
05190
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Similarly, multiply Eq.~62a! on the left by (â1 sinhuq), and
the adjoint of Eq.~62b! on the right by (2â1coshuq), and
add again to get

~cosh2uq!vq~ â†â !2~sinh2 uq!~ â1â !vq50. ~66!

If we recall thatâ1â5Uaââ1Ua
† for some unitary trans-

formation Ua , and introduce the diagonal decompositio
ââ†5(kuxk,a&nk,a^xk,au and â†â5(kux̄k,a&nk,a^x̄k,au,
with ux̄k,a&5Uauxk,a&, from Eq. ~66! it follows that

@~cosh2 uq!nk8,a2~sinh2 uq!nk,a#^x̄k,auvqux̄k8,a&50,
~67!

hence,

^x̄k,auvqux̄k8,a&5^x̄k,auvq
†ux̄k8,a&50 ~68!

whenevernk,aÞ0 and/ornk8,aÞ0. But then

âvq5âvq
†50 ~69!

must hold, and Eqs.~62! are so reduced to the simpler form

wqâ5~ i\ḃqa2\vqbqa!â, ~70a!

wq
†â5~ i\ḃqa2\vqbqa!* â. ~70b!

Equations~69! show that all gauge couplingsvq compatible
with the ansatz~40! for ĝ give null contribution to the prob-
lem and cannot be employed for an eventual alleviation
computational complexity. Finally, use of the quasidiago
representationâ5(kuxk,a&Ank,a^x̄k,au @corresponding to
the diagonal representations forââ† and â†â given above#
in Eqs.~70!, leads to

nk,a@wquxk,a&2~ i\ḃqa2\vqbqa!uxk,a&] 50, ~71a!

nk,a@wq
†uxk,a&2~ i\ḃqa2\vqbqa!* uxk,a&] 50,

~71b!

and reveals that the statesuxk,a& contributing to â @nk,a
Þ0# must necessarily satisfy the eigenvalue equations

wquxk,a&5~ i\ḃqa2\vqbqa!uxk,a&, ~72a!

wq
†uxk,a&5~ i\ḃqa2\vqbqa!* uxk,a&. ~72b!

Finally, in view of Eqs.~70! and~55!, the effective evolution
Eq. ~63! for â reduces to the unperturbed form

i\
dâ

dt
5@H lat2K̃ lat2Va#â. ~73!

It is immediate that Eq.~73! preserves the orthogonality o
distinct â ’s, i.e., d(â8uâ)/dt50, as required by the ansat
for ĝ.
7-9
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While the self-consistency constraints for the pure st
case assumed the form of modified conditions
decoherence-free propagation, Eqs.~69! and ~70! show that
in the finite-temperature case, self consistency correspo
exactly to the conditions for decoherence-free decoupl
The reason for this is seen in the effect of the interact
term (W2K̃ ) on anyD2 product, i.e.,

~W2K̃ !âĝa5âF(
q

~mq,abq
†1mq,a* bq!ĝaG2@K̃ latâ#ĝa ,

~74!

which means that the interaction becomes decoupled, reg
less of the exact nature of the state for the phonon s
system. Here,mq,a denotes the eigenvalue ofwq correspond-
ing to â @mq,a5hq,a /coshuq#.

We may conclude now that a finite-temperature state
erator of the form~40! is an exact solution of the evolutio
equation~52! iff

~a! the lattice-phonon interactionW is linear in the pho-
non degrees of freedom@Eq. ~55!#;

~b! the lattice operatorsâ are state operators o
decoherence-free subspaces of the lattice subsystem, i.e
@degenerate# common eigenstates ofwq and wq

1 @Eqs. ~70!
and~72!#, which are, simultaneously, solutions of the evo
tion equation~73!;

~c! the phonon displacement parametersbqa evolve ac-
cording to

i\ḃqa2\vqbqa5mq,a . ~75!

In addition
~d! compatible gauge generators act on the lattice st

only, K̃ â5K̃ latâ for all â, and the lattice energy shiftVa in
Eq. ~73! amounts to@see Eq.~65!#

Va~ t !52
1

2 (
q

~mqabqa* 1mqa* bqa!. ~76!

Obviously, this result is strongly reminiscent of the pu
state case examined in Sec. II, but involves a simpler form
W and the additional constraint~72b! on the lattice states
which calls for exact decoherence-free propagation in
lattice subsystem. It should be noted, however, that this c
straint vanishes in the zero-temperature limit, when sinhuq
50, and the pure state case of Sec. II, for linear phon
coupling, can be recovered identically if needed. For the p
ticular situation when the initial phonon displacements
null, bqa50, and the initial state is a product between
lattice distribution and a phonon thermal state,r̂(0)
5 r̂ lat(0)r̂ph,T , one obtains the following interesting theo
rem, referred to in the Introduction:

A system initially in a product stater̂(0)5 r̂ lat(0) r̂ph,T
evolves into a Gaussian, generalizedD1 state given by the
ansatz~40! if and only if the interaction is linear in the pho
non coordinates and the initial lattice state is a distribut
on a direct sum of orthogonal decoherence-free subspa
provided any exist.
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When the eigenvaluesmq,a are time independent, Eq.~75!
shows that the displacementsbqa perform simple harmonic
oscillations around displaced equilibrium positions,

bqa~ t !5Fbqa~0!1
mq,a

\vq
Ge2 ivqt2

mq,a

\vq
. ~77!

In the peculiar case when the initial displacement brings e
mode over the equilibrium position, the reduced phonon d
sity matrix becomes time independent@see Eq.~44!, and take
into account that (âuâ)5const, according to Eq.~73!#. But
the stationary phonon state is not exactly thermal, unless
overall state is a simpleD2 product, and the lattice evolution
is confined to a single DFS. Furthermore, since all gene
ized amplitudes (gauga8) are constant in time, the lattic
reduced density-matrixr̂ lat5(a,a8(gauga8)â8â† evolves in
an unperturbed fashion, up to the@constant# energy shifts
Va , i.e.,

r̂ lat~ t !5 (
a,a8

~gauga8!expF2
i

\
~Hlat2Va8!G

3â8~0!â1~0!expF i

\
~Hlat2Va!G .

As for pure states, the evolution of self-consiste
density-matrixD1 states~40! is disentangled into separab
evolutions of the componentD2 statesâĝa , hence, no self-
consistent model can generate equations of motion coup
distinct D2 contributions. Again, no nonlinearity survives i
the equation of motion for the lattice states, and stand
Davydov distributions, for whichâ5wncn

†u0& lat^xau, for
some orthonormaluxa& @^xauxa8&5daa8#, can generate
when self consistent, only stationary lattice configuratio

@(âuâ)5uwnu25const#. A similar statement applies to mul
tiquanta, on-siteD1 states and their superpositions. Also,
complete analogy to the pure state case, the relation to
D2 Davydov soliton equations becomes apparent when
equations of motion forâ andbqa are cast in the form

i\
dâ

dt
5@H lat2K̃ lat1^gauWuga&1Va#â, ~78a!

i\ḃqa2\vqbqa5^âuwquâ&. ~78b!

If â is given a linear parametrization, one can recov
Davydov-like equations, but the self-consistency constra
~72! for â reduce the interaction term in Eq.~78a! to a scalar
contribution. Even this scalar cannot have a nonlinear dep
dence onâ, since the right-hand side of Eq.~78b! becomes
independent ofâ.

At last, the self-consistency conditions~72! can be stated
alternatively as the initial state constraint

Laâ~0!50, ~79!

with
7-10
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La5E
0

`

dt(
q

@„wq,a
† ~ t!2mq,a* ~ t!…„wq,a~ t!2mq,a~ t!…

1@wq,a~ t !2mq,a~ t !#„wq,a
† ~ t !2mq,a* ~ t !…#, ~80!

and

wq,a~ t !5Ua
1~ t !wq~ t !Ua~ t !, ~81!

whereUa(t) is the unitary propagator corresponding to t
equation of motion~73!.

Recall that the above results apply to the fini
temperature version of the ansatz~40!. It is interesting to
keep in mind that the zero-temperature limit also provide
density-matrix generalization of the pureD1 states, for
which the acceptable lattice-phonon couplings resume
pression~11!, bilinear in phonon coordinates. This allow
conceivably, an extended class of nontrivial models and
problem can be approached in the same manner. Neve
less, only models with interactions linear in the phonon
ordinates admit self-consistent, finite-temperature ext
sions, and thus bear realistic physical significance. One
note that both the original Davydov model@15# and all its
studied versions@4# belong to this class.

V. DISCUSSION AND EXAMPLES

For the reasons outlined above, we limit the discussion
models with linear phonon coupling, and extend the s
consistency conditions forpure lattice states to include th
constraint

wq
1ua&5~ i\ḃqa2\vqbqa!* ua&, ~82!

and place the stateua& in a DFS of the lattice. In othe
words,ua& can be a self-consistentD2 factor if and only if it
lies in a lattice DFS. The properties of the decoherence-
subspaces have been studied in detail in connection
quantum computation theory, and the interested reader i
ferred to the available literature@6,7#. Suffice it to say that
their existence is determined by the symmetry properties
both the unperturbed Hamiltonian and the system-bath in
action, and thus, a proper understanding involves a L
algebraic/group-theoretic framework. However, for an ex
dient assessment of various Davydov-like models, the b
pedestrian characterization given below proves satisfacto

Let us start by noting that instead of Eq.~82!, it is suffi-
cient to require thatua&, which according to Eqs.~22! and
~14!, satisfieswqua&5( i\ḃqa2\vqbqa)ua&, must belong to
an eigenspaceS of wq that is also left invariant bywq

† . In-
deed, sincewq reduces to the identity onS, up to a scalar
factor, if wq

† leaves this subspace invariant, it also must
proportional to the identity, by the complex conjugate fact
and the adjoint eigenvalue equation~82! is recovered neces
sarily. Sinceua& belongs to a DFS, the equation of motio
for ua& reduces to the unperturbed form@see Eqs.~16!, ~17!,
and ~19!#

i\uȧ&5~Hlat2Va!ua&. ~83!
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Hence, in all cases that support a smooth extension to fin
temperature conditions, the self-consistent lattice states
effectively decoupled from the phonon dynamics, up to
phonon modulated phase factor.

In fact, the remarkable phenomenon highlighted
decoherence-free propagation is that coupling to a@nonequi-
librium# thermal bath need not necessarily result in decoh
ence to a mixt, statistical state. In particular, any se
consistentD2 product with a pure lattice factorua& displays
a finite-temperature density matrix

r~ t !5expF2
i

\
Hlatt G ua~0!&rph~$bqa%,T!^a~0!u

3expF i

\
Hlatt G ,

with

rph~$bqa%,T!5)
q

1

Zq
expF2

\vq

kBT
@bq

†2bqa* ~ t !#

3@bq2bqa~ t !#G .
It obviously maintains the pure character of the lattice st
throughout the evolution, provided the time dependence
the displacement parameters complies with the s
consistency conditions. For a simple concrete example,
the lattice system be coupled to the phonon bath in a s
homogeneous manner, such that, e.g.,wq5xq(ncn

†cn

5xqN̂lat , and let the unperturbed lattice Hamiltonian co
serve the number of lattice excitations, i.e.,@wq ,N̂lat#

5@wq
† ,N̂lat#5@Hlat ,N̂lat#50. Then any lattice state with a

well-defined number of excited quanta qualifies as aD2 fac-
tor state, and forN̂latua&5nua&, the associated equations o
motion for the displacement parameters readi\ḃq2\vqbq
5nxq , with the trivial solution bqa(t)5@bqa(0)
1(nxq /\vq)#exp(2ivqt)2(nxq /\vq). Hence, although the
lattice interacts with a@thermal# bath, its state is propagate
according to the unperturbed dynamics, and if the origi
state is a pure state, its condition is preserved in time. On
other hand, the bath evolves into a superpositon of Gaus
states, even when initially in a thermal equilibrium sta
@bqa(0)50#. Only if at the outset the bath modes are d
placed directly over the displaced equilibrium positio
(2nxq /\vq), does the bath remain in a stationary state. T
effect is absolutely robust under variations of the interact
strength, i.e., stronger coupling cannot induce decoheren

Returning now to the formal characterization
decoherence-free propagation, observe that if the lattice c
plings wq andwq

† are time-independent,ua& must dwell in a
time-invariant subspace@corresponding to time-independe
eigenvaluesmqa# and, sinceHlat alone drives the evolution
of ua&, this subspace must also be an invariant subspac
Hlat @the latter can be time dependent#. To see this, let us
assume that the eigenvaluemqa corresponding toua(t)&
changes parametrically in time, such that the time deriva
7-11
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of wqua&5mqaua& readswquȧ&5mqauȧ&1(dmqa /dt)ua&.
If ua'& denotes the component ofuȧ&, which is orthogonal to
all eigenvectors ofwq(wq

†) for the eigenvaluemqa (mqa* ),
thenwqua'&5mqaua'&1(dmqa /dt)ua&. But the latter equa-
tion implies that ^auwqua'&5(dmqa /dt)^aua&50 @since
^auwq5mqa^au#, and thus (dmqa /dt)50. In fact, the re-
quirement that self-consistent statesua& must lie in an invari-
ant subspace of the lattice Hamiltonian extends to all ca
where the couplingswq have time-invariant eigenspaces, b
not necessarily time-independent eigenvalues@e.g., when
wq5(nxqn(t)cn

†cn#. Applying the same reasoning, it follow
that in such situations, the time dependence of the eigen
ues corresponding to a self-consistentua& is limited to the
intrinsic time dependence implied by the form of couplin
i.e., (dmqa /dt)5(]mqa /]t). In the most restrictive situa
tion, when ua& is a nondegenerate eigenvector for at le
onewq(wq

†), then it can be solution of Eq.~83! if and only if
it is also a time-independent eigenstate ofHlat .

The necessary and sufficient condition that a comm
eigenspaceS of all wq and wq

† be a decoherence-free su
space, i.e., that it remain a common eigenspace of thewq’s
andwq

†’s under the dynamics driven by the unperturbed l
tice Hamiltonian, is that everyua& in S must also satisfy

S i

\
@Hlat ,wq#1

]wq

]t D ua~ t !&5
dmqa

dt
ua~ t !&, ~84a!

S i

\
@Hlat ,wq

1#1
]wq

†

]t D ua~ t !&5
dmqa*

dt
ua~ t !&, ~84b!

for every q, at all times. The proof is trivial. Letua(t)&
evolve according to Eq.~83! and satisfy wq(t)ua(t)&
5mq,a(t)ua(t)& at some instantt. If wq(t1Dt)ua(t1Dt)&
5mq,a(t1Dt)ua(t1Dt)& also holds, then one has, to fir
order inDt,

wq~ t !ua~ t !&1DtFwq~ t !uȧ~ t !&1
]wq

]t
ua~ t !&G

5mq,a~ t !ua~ t !&1DtFmq,a~ t !uȧ~ t !&1
dmq,a

dt
ua~ t !&G ,

which in view of Eq.~83! yields Eq.~84a!. Conversely, if
ua(t)& also satisfies Eq.~84a! at the same instantt, then a
slight rearrangement of terms gives

d

dt
@wq~ t !ua~ t !&] 5

d

dt
@mq,a~ t !ua~ t !&],

andwq(t1Dt)ua(t1Dt)&5mq,a(t1Dt)ua(t1Dt)& follows
necessarily. A similar reasoning applied towq

† verifies con-
dition Eq.~84b!. If S is time invariant, then the restriction o
wq to S changes in time only by a time-dependent sca
multiplication,wq(t)uS5l(t)wq(0)uS , and

]wq

]t
ua~ t !&5

dmqa

dt
ua~ t !&,
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such that we obtain the following restricted criterion:

A time-invariant common eigenspace S of all wq is a DFS,
i.e., is left invariant by both Hlat and every wq

† , if and only if
it is contained in the common kernel of all commutato
@wq ,wq

†# and @Hlat ,wq#. In that case, S is also in the kerne
of every @Hlat ,wq

†# [i.e., @wq ,wq8
†

#ua&5@Hlat ,wq#ua&
5@Hlat ,wq

†#ua&50 for every q, and everyua& in S#.
The above can be given a proof independent of Eqs.~84!.

Indeed, assuming thatS is time independent, ifwq
† andHlat

leaveS invariant, for anyua& in S it is true thatwq
†wqua&

[mqawq
†ua&5wqwq

†ua& and similarly, Hlatwqua&
[mqaHlatua&5wqHlatua&. It is also true that, for allua& in
S, ^buwq

†ua&50 whenever ^bua&50, and ^a8uwq
†ua&

5mqa* ^a8ua& for all ua& and ua8& in S. Hence, wq
†ua&

5mqa* ua& for any ua& in S. But then Hlatwq
†ua&

[mqa* Hlatua&5wq
†Hlatua&, becauseHlatua& is necessarily in

S. Conversely, if@wq ,wq
†#ua&50 for all ua& in S, thenwq

†ua&
is in S, ^a8uwq

†ua&5mqa* ^a8ua& for all ua8& in S and
wq

†ua&5mqa* ua&. And if @Hlat ,wq#ua&50 for any ua& in S,
thenHlatua& is an eigenvector ofwq for the eigenvaluemqa ,
and must be inS. It is also immediate that@Hlat ,wq

†#ua&
50 holds too.

Virtually all studied versions of the Davydov model di
play time-independent interactions, and therefore fall un
the incidence of this prescription for self consistency. F
example, the general Frohlich Hamiltonian

H5(
mn

Jmncm
† cn1(

q
\vqbq

†bq

1(
qn

\vq~xqnbq
†1xqn* bq!cn

†cn ~85!

employs the couplings

wq5\vq(
n

xqncn
†cn , ; q, ~86!

which obviously satisfy@wq ,wq
†#50 and have as eigenvec

tors the unperturbed on-site Fock states, for the discrete
genvaluesmqn5\vqxqn . If all xqn are nondegenerate for a
least someq, as happens in the proper Davydov mod
wherexqn5xqeinaq, the lattice Hamiltonians admitting self
consistentD2 states under the interactions~86! can only be
of the diagonal formHlat5(n«ncn

1cn . This is, of course,
the well-known result that theD1 states are exact under th
phonon-lattice interaction~86! just in the limit of vanishing
hopping between monomers. Only when thexqn collapse to
degenerate values, e.g., in the low-frequency limit, wh
qa→0, can nontrivialD2 states appear for the Hamiltonia
~85!. But in order to recover a nontrivial dynamics in th
low-frequency limit, the phonon modes must belong to
optical band, whereas the Davydov model uses specific
acoustic modes.

The situation does not improve when hopping terms
added to expression~86!, to obtain
7-12
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FROM DAVYDOV SOLITONS TO DECOHERENCE-FREE . . . PHYSICAL REVIEW E 64 051907
wq5\vq(
n

@xqn
(1)cn

†cn1xqn
(2)~cn11

† cn1cn
†cn11!#

5\vq(
n

@xq
(1)cn

†cn

1xq
(2)~cn11

† cn1cn
†cn11!#einaq ; q, ~87!

as done by Takeno@16#, Todorovicet al. @17#, Bartnik et al.
@18#, or Pang@19#. To the contrary, in this casewq andwq

† no
longer commute, and do not share eigenvectors, which c
promises self consistency from the outset. For instance,
the translation invariant ansatz in the second line above,
obtains

@wq ,wq
†#5 ikq

(1)(
n

~cn
†cn112cn11

† cn!

1 ikq
(2)(

n
~cn21

† cn112cn11
† cn21! ~88!

with kq
(1)52 Im@xq

(1)(xq
(2))* (12eiqa)# and kq

(2)5

22uxq
(2)u2 sin(qa). But although@wq ,wq

†# is diagonalized by
the simple Fourier transformationcn5(1/AN)(QcQeiQna

and can have null eigenvalues, none of its kernel states i
eigenstate ofwq or wq

† . As for the proper Davydov mode
self-consistentD2 states can only appear in the low
frequency limit, provided the phonons belong to optic
modes.

In view of the above, a search for improved wave fun
tions has no chance of recovering a self-consistent mode
long as the structure of the Hamiltonian is not adjusted
support decoherence-freeD2 states. The partially dresse
state, introduced by Brown and Ivic@20#, which belongs yet
to the standardD1 class, can yield a better approximation f
the exact dynamics of an initialD1 configuration under the
Davydov Hamiltonian, but does not make any progress
ward a self-consistent model. The same holds for the co
ent state used by Wanget al. @21# in their vibron soliton
model, and for Pang’s quasicoherent wave functionuF&
51/l@11(nwncn

†11/2!((nwncn
†)2#u0& lat @19#. In these

cases it suffices, in fact, to note that the interactions~86! and
~87! commute with the lattice number operator,N̂lat

5(ncn
†cn , hence, any eigenvectors are also eigenvector

N̂lat . But a coherent or quasicoherent state is not an eig
vector ofN̂lat , and cannot generate a self-consistentD2 state
even in the low-frequency limit. Yet the underlying idea, th
the lattice stateua& could be a coherent state@or an approxi-
mation thereof#, does provide a good starting point for th
construction of a nontrivial self-consistent example.

For instance, consider the widely used version of
@time-independent# Frohlich Hamiltonian for a one-
dimensional lattice of bosonic oscillators with neare
neighbor hopping,
05190
-
th
ne

an

l

-
as
o

-
r-

of

n-

t

e

-

H5(
n

«cn
†cn2J(

n
~cn11

† cn1cn
†cn11!1(

q
\vqbq

†bq

1(
qn

\vq~xqnbq
†1xqn* bq!cn

†cn , ~89!

to which we add an external pumping term of the form

Wpump5(
nq

\vq~xqnbq
†1xqn* bq!„zn~ t !cn

†1zn* ~ t !cn….

~90!

In such a case, the corresponding couplingswq are readily
identified as

wq5\vqF(
n

xqn„cn
†1zn* ~ t !…@cn1zn~ t !#

2(
n

xqnuzn~ t !u2G , ~91!

satisfy @wq ,wq
†#50, and have obvious time-depende

eigenstates. Let us consider the ground state

ua~ t !&5eiQa(t) expF2(
n

„zn~ t !cn
†2zn* ~ t !cn…G u0& lat .

~92!

Since ua& must be simultaneously a solution of the unpe
turbed problem

i\
dua&
dt

5F(
mn

«cn
†cn2J(

n
~cn11

† cn1cn
†cn11!2VaG ua&,

~93!

it is necessarily a product of coherent states for the lat
normal modes, with a phase factor

Qa~ t !5
i

\E0

t

dt Va~t!. ~94!

Hence, the pump-induced displacements must amoun
zn(t)5(qzq(0)einqae2 iVqt, and satisfy

i\
dzn

dt
5«zn2J~zn211zn11!, ~95!

where the lattice frequencies read\Vq5«22J cos(qa). The
corresponding equations of motion for the phonon displa
ments are now

i\
dbqa

dt
5\vqFbqa2(

n
xqnuzn~ t !u2G , ~96!

and apply at both zero and finite temperature. This is
simple example showing that external pumping can be
strumental in maintaining the lattice in a pure coherent s
at arbitrary temperature. Moreover, it also verifies tha
Frohlich-like pumping effect can be produced, albeit on t
bath modes, due to the nonlinearity in Eq.~96!. Indeed, let us
7-13
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S. GHEORGHIU-SVIRSCHEVSKI PHYSICAL REVIEW E64 051907
assume, as in the Davydov model, that the bath phon
belong to an acoustic branch ofN distinct modes, such tha
xqn5xqe2 iqna and vq5v2q . Taking advantage of the de
generacy of the lattice spectrum, let the external pump ac
the lattice frequency VQ , such that zn5(z1eiQna

1z2e2 iQna)e2 iVQt. But then the driving term for the pho
non displacements in Eq.~96! amounts to

xq(
n

e2 iqnauzn~ t !u25Nxq@~ uz1u21uz2u2!dq,01z1z2* dq,2Q

1z1* z2dq,22Q#,

which means that only the fundamental bath mode and
modes of frequencyv2Q experience time-independent exte
nal driving. Therefore, if the phonon bath is initially in the
mal equilibrium, all modes that are not affected by the e
ternal pump remain in thermal equilibrium, while the thr
modesq50,62Q are each driven in a Gaussian state, ev
tually of macroscopic displacement@see the presence of th
N factor above#. In another limit case, when the initial dis
placements of the bath modes coincide with the displa
equilibrium positions set by the amplitude of the pump, t
bath remains in a stationary, nonequilibrium state, while
lattice oscillates harmonically at the pump frequency. Unl
Q50 or an accidental degeneracy intervenes, the pump
frequency for the coherent lattice state is distinct from tha
the coherently driven modes of the bath, and the proc
obviously qualifies as a type of Frohlich effect. But contra
to the usual picture, it is the bath that is driven into a no
trivial state, while the primary, lattice subsystem experien
no nonlinearities, and is maintained in a pure state.

For closure, let us illustrate more fundamental features
the coherent product ansatz@Eq. ~40!# in another simple ex-
ample with exactly tractable decoherence-free propagat
Consider a symmetrical dimer with site-independent Fr
lich interaction and phonon-assisted tunneling, described

H5~c1
†c11c2

†c2!F«1(
q

~xqbq
†1xq* bq!G

2~c1
†c21c2

†c1!FJ1(
q

~lqbq
†1lq* bq!G

1(
q

\vqbq
†bq . ~97!

The simple transformation

cj5
1

A2
~ c̄11~21! j 21c̄2!, j 51,2, ~98!

brings the Hamiltonian~97! to the evidently solvable form

H5 «̄1c̄1
†c̄11 «̄2c̄2

†c̄21 c̄1
†c̄1(

q
~xq,1bq

†1xq,1* bq!

1 c̄2
†c̄2(

q
~xq,2bq

†1xq,2* bq!1(
q

\vqbq
†bq , ~99!
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where the renormalized energies and coupling constants
«̄15«2J, «̄25«1J, xq,15xq2lq and, respectively,xq,2

5xq1lq . Since @H,c̄1
†c̄1#5@H,c̄2

†c̄2#50, the interaction
with the bath does not mediate an energy exchange betw
the monomers, but affects only their coherent correlatio
through a process of dephasing. In its fermion/two-level
alization, this model is easily recognized as equivalent to
exactly solvable Jaynes-Cummings model of quantum op
@22# and to the Caldeira-Leggett model of quantum dissi
tion @23#. Various versions have also enjoyed attention lat
in studies of decoherence in quantum registers@24,25#. Con-
fining the discussion to single-quantum lattice states, so a
cover both the fermionic and the bosonic case, we apply
ansatz~40! and construct the self-consistent, statistical sup
position

ĝ5w1~ t !@ c̄1
†u0& lat^f1u#ĝ11w2~ t !@ c̄2

†u0& lat^f2u#ĝ2 ,
~100!

with w j (t)5w j (0)exp@2i/\„«̄ j t2*0
t dt V j (t)…# scalar am-

plitudes,uf j& normalized, but not necessarily orthogonal, la
tice state vectors, and

ĝ j5)
q

exp@bq j~ t !bq
†2bq j* ~ t !bq#

1

AZq

expF2
\vq

2kBT
bq

†bqG ,
~101!

where bq j(t)5@bq j(0)1xq, j /\vq#e2 ivqt2xq, j /\vq . The
phonon-driven energy shiftsV j are given by Eq.~76! with
the appropriate substitutions. Then, the total density ma
for the dimer-bath system reads

r̂5uw1u2u1̄&^1̄uĝ1ĝ1
†1uw2u2u2̄&^2̄uĝ2ĝ2

†1w1w2* ^f1uf2&u1̄&

3^2̄uĝ1ĝ2
†1w1* w2^f2uf1&u2̄&^1̄uĝ2ĝ1

† , ~102!

where we have denoted, for simplicity,u1̄&5 c̄1
†u0& lat and

u2̄&5 c̄2
†u0& lat , and the reduced density matrix for the dim

is obtained accordingly as

r̂dimer[Trphr̂5uw1u2u1̄&^1̄u1uw2u2u2̄&^2̄u1w1w2* ^f1uf2&

3~ ĝ2uĝ1!u1̄&^2̄u1w1* w2^f2uf1&~ ĝ1uĝ2!u2̄&^1̄u.

~103!

Since uw j (t)u5uw j (0)u, the occupation probabilities of th
statesu1̄& and u2̄& are invariant, and only the correlatio
( r̂dimer) 1̄2̄5( r̂dimer) 2̄1̄

* 5w1w2* ^f1uf2&(ĝ2uĝ1) varies in time,
as expected in a typical dephasing process. Of course,
same is not true for the original, localized statesu1&
[c1

†u0& lat5(1/A2)(u2̄&2u1̄&) and u2&[c2
†u0& lat

5(1/A2)(u1̄&1u2̄&). In terms of the latter, the dimer reduce
density matrix reads
7-14
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FROM DAVYDOV SOLITONS TO DECOHERENCE-FREE . . . PHYSICAL REVIEW E 64 051907
r̂dimer5S 1

2
1Re(r̂dimer) 1̄2̄D u1&^1u

1S 1

2
2Re(r̂dimer) 1̄2̄D u2&^2u

1F S 1

2
(uf2u22uf1u2)1 i Im( r̂dimer) 1̄2̄D u1&^2u

1H.c.G , ~104!

and it becomes apparent that the correlation between
physical dimers disappears if and only ifuf1u25uf2u251/2
and Im(r̂dimer) 1̄2̄50. It is also evident that all nontrivial as
pects of the dynamics are carried by the matrix elem
( r̂dimer) 1̄2̄ , and particularly by the bath factor

~ ĝ2uĝ1!5(ĝTuexpF2(
q

@bq2~ t !bq
†

2bq2* ~ t !bq#GexpF(
q

„bq1~ t !bq
†

2bq1* ~ t !bq…G uĝT). ~105!

Expression~105! can be evaluated straightforwardly by u
ing the thermal operators~47!, and amounts to (ĝ2uĝ1)
5exp@2iF(t)#exp@2G(t)#, where F(t)5 i (q(bq1bq2*
2bq1* bq2) and

G~ t !5
1

2 (
q

ubq12bq2u2 cothS \vq

2kBTD . ~106!

Under the traditional assumption of initial thermal equ
librium of the bath, with null original displacements, the in
tial density matrix corresponding to the ansatz~102! factor-
izes in the usual manner, asr̂(0)5 r̂ lat(0)^ r̂ph,T , where

r̂ lat~0!5uw1~0!u2u1̄&^1̄u1uw2~0!u2u2̄&^2̄u1w1~0!w2* ~0!

3^f1uf2&u1̄&^2̄u1w1* ~0!w2~0!^f2uf1&u2̄&^1̄u,

~107!

and rph,T5ĝTĝT
1 . Since, at later times, the bath displac

ments readbq j(t)5(xq j /\vq)(e2 ivqt21), the relaxation
function G becomes

G0~ t !52(
q

ulqu2 cothS \vq

2kBTD ~12cosvqt !

~\vq!2
. ~108!

The physics behind expression~108! has been discussed
length in Ref.@25#. Depending on the spectral density of th
bath modes, the relaxation exponent may or may not ha
finite limit as time passes to infinity. If it does not reach
plateau, the correlation (r̂dimer) 1̄2̄ eventually falls to zero and
the dimer density matrix is invariably driven toward a stea
05190
he

t

-

a

y

distribution diagonal on the statesu1̄& andu2̄&, hence, under-
going total dephasing through an environment-induced
perselection process@11#. The noteworthy point in the abov
derivation is that the dimer density matrix~107!, param-
etrized by three linearly independent, real paramet
@ uf1u21uf2u251#, may span the entire set of statistic
dimer states corresponding to the subspace$u1̄&,u2̄&% @or
$u1&, u2&%#. In other words, Eq.~102! gives explicitly the
general solution of the Liouville-von Neumann problem f
the Hamiltonian~97!, with an initial condition of the type
r̂(0)5 r̂ lat(0)^ r̂ph,T .

From the point of view of coherent behavior, a spec
mention is reserved once more for the singular situat
when the bath displacements remain stationary in their
placed equilibrium positions, i.e.,bq j(t)52(xq j /\vq).
Then the bath is left in a steady superposition of therm
Gaussian states, and the corresponding bath factor~106! be-
comes constant in time. If the latter does not vanish,
matrix element (r̂dimer) 1̄2̄ oscillates as w1(t)w2* (t)
5w1(0)w2* (0)exp@2(i/\)DVt#, at the frequency

DV[V22V15(
q

xqlq* 1xq* lq

\vq
, ~109!

and the dimer is kept in a coherently oscillating@or two-level
rotating# state, somewhat reminiscent of a soliton state.

VI. CONCLUSION

We have analyzed the self-consistency conditions fo
fairly wide class of generalizedD1 states, based on th
Davydov ansatz for soliton propagation in molecular chai
Our extended ansatz is given in a density-matrix@state op-
erator# form @Eq. ~40!#, which covers, in proper limit cases
both the pure state and the finite-temperature standard D
dov states. In general, it describes strongly entangled, st
tical superpositions of lattice and bath states, with the pr
erty that the bath is maintained in a statistical superposi
of Gaussian thermal states. We find that the exact propa
tion of such states amounts to an effective decoupling of
lattice subsystem from its boson bath, i.e., to decoheren
free propagation. Given the specific form of the bath sta
the lattice-bath interactions compatible with such a pheno
enon are limited to linear or bilinear forms in the bath coo
dinates, but only interactions linear in the bath degrees
freedom allow self-consistent propagation at finite tempe
tures. Unfortunately, in all cases, the equations of motion
the ansatz parameters differ from Davydov’s soliton eq
tions by additional constraints, which apparently abolish
characteristic nonlinearities of the latter. Just as Brown’s
lidity theorems@2#, the result is independent of any intern
characteristics of the system, including symmetries, ra
and strength of interactions, or type of phonon branch
This does not affect the suitability of the ansatz as a va
tional trial ansatz, and the Davydov model may still be
good approximation in different conditions.

As an interesting byproduct, we are left with a set
nontrivial, exact density-matrix solutions for systems su
7-15
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porting decoherence-free propagation. Although exact res
for such systems have been already reported†see, e.g.,
@10,25#‡, the present solutions are given in a closed, expl
operatorial form, and are not limited to the usual equilibriu
separable, initial conditions. Consequently, it becomes p
sible to probe the dynamics of such systems under none
librium, Gaussian states of the bath. We retrieved a Froh
d

C
o
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o,

s-

.
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.
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effect under decoherence-free conditions facilitated by tim
dependent, external pumping, and found that certain n
equilibrium states of the bath can be instrumental in ma
taining bath-entangled, decoherence-free states of the dr
~lattice! subsystem. We believe that this ansatz may pro
useful in illustrating a variety of nontrivial aspects of rela
ation and decoherence in quantum systems.
;
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